
1 Two experimental set-ups used to demonstrate diffusion of gases are shown in the diagrams below. Each porous pot contains a mixture of nitrogen and oxygen.



What changes, if any, to the water levels **P** and **Q**, would you expect to see in both experiments?

|   | experiment 1                     | experiment 2                     |
|---|----------------------------------|----------------------------------|
| Α | P and Q remain the same          | P and Q remain the same          |
| В | P and Q remain the same          | <b>Q</b> is higher than <b>P</b> |
| C | P is higher than Q               | <b>Q</b> is higher than <b>P</b> |
| D | <b>Q</b> is higher than <b>P</b> | <b>Q</b> is higher than <b>P</b> |

Which piece of apparatus could be used to determine the end-point of the reaction between hydrochloric acid and potassium hydroxide?

A electronic balanceB gas syringeC stopwatchD thermometer

3 A new substance was discovered and a series of experiments were conducted on it.

Which observation suggests that the substance cannot be an element?

- A It has a fixed boiling point.
- B It dissolves in water to form a yellow-green solution.
- **C** When heated strongly, a brown solid and a yellow gas are produced.
- **D** When heated in air, it can form oxides with two different chemical formulae.

| 4 | Three  | atoms | are | shown. |
|---|--------|-------|-----|--------|
| 4 | 111166 | atoms | aıc | SHOWI. |

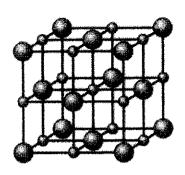
$$^{32}_{16}$$
 X  $^{33}_{16}$  Y  $^{32}_{17}$  Z

What can be deduced from the proton numbers and nucleon numbers of X, Y and Z?

- A X and Y are the same element.
- B X and Z are the same element.
- C Y has more protons than X.
- D Z has more neutrons than Y.
- 5 Which element has the most number of electrons in the outermost shell of its atoms?
  - A argon

**B** boron

C chlorine


D potassium

- 6 What are isotopes?
  - A Atoms of different elements with the same nucleon number but different proton number.
  - **B** Atoms of the same element with the same nucleon number but different proton number.
  - Atoms of the same element with the same number of protons but different numbers of neutrons.
  - **D** Atoms of the same element with the same number of neutrons but different numbers of protons.
- 7 Which of the following substances contains both ionic and covalent bonds?
  - A aluminium carbonate
- **B** graphite

C hydrogen chloride

**D** sodium

8 The diagram shows the arrangement of the ions in an ionic lattice.



Which compound would likely have this arrangement?

A barium fluoride

B lithium nitride

C magnesium hydroxide

**D** sodium chloride

**9** Which ionic equation represents the reaction when calcium carbonate powder is added to hydrochloric acid?

A  $H^+$  (aq) +  $OH^-$  (aq)  $\rightarrow$   $H_2O$  (l)

**B**  $Ca^{2+}$  (aq) +  $2Cl^{-}$  (aq)  $\rightarrow$   $CaCl_2$  (s)

**C**  $2H^+$  (aq) +  $CO_3^{2-}$  (aq)  $\rightarrow CO_2$  (g) +  $H_2O$  (l)

**D** CaCO<sub>3</sub> (s) + 2H<sup>+</sup> (aq)  $\rightarrow$  Ca<sup>2+</sup> (aq) + CO<sub>2</sub> (g) + H<sub>2</sub>O (l)

10 Bones contain a complex mixture of calcium salts, protein and other materials. When a bone is strongly heated in a current of air, the only residue is calcium oxide. From a sample of 100 g of bone, 42.0 g of calcium oxide were obtained.

What is the percentage by mass of calcium in the bone?

A 12.0 %

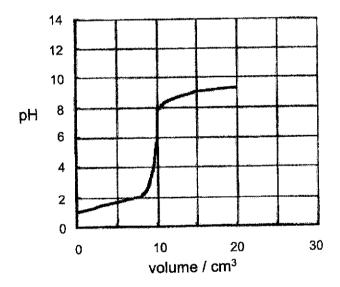
**B** 30.0 %

**C** 42.0 %

**D** 71.4 %

11 Which of the following statements does **not** describe a property of a weak alkali?

A It has a pH between 8 to 10.


B It forms a salt with sodium metal.

C It is only partially dissociated into ions.

**D** It turns universal indicator solution blue.

- Which chemical is best used to distinguish between calcium chloride and calcium carbonate?
  - A aqueous sodium hydroxide
  - B dilute hydrochloric acid
  - C silver nitrate solution
  - D universal indicator solution
- 13 Which of the following is not a common use of sulfuric acid?
  - A battery acid
  - B making of wooden furniture
  - C manufacture of detergent
  - D manufacture of fertilliser
- 14 In an acid-base titration, a 0.10 mol/dm³ alkali is added to 10 cm³ of 0.10 mol/dm³ dilute acid.

The graph below shows the change in pH during the titration.



Which of the following represents the titration shown in the graph?

- A ethanoic acid and aqueous sodium hydroxide
- B ethanoic acid and aqueous ammonia
- C nitric acid and aqueous sodium hydroxide
- D nitric acid and aqueous ammonia

15 In which equation does the metal oxide act as an acidic oxide?

A 
$$K_2O(s) + H_2O(l) \rightarrow 2KOH(aq)$$

**B** Fe<sub>2</sub>O<sub>3</sub> (g) + 3CO (g) 
$$\rightarrow$$
 2Fe (s) + 3CO<sub>2</sub> (g)

**C** 
$$Al_2O_3(s) + 6HCl(aq) \rightarrow 2AlCl_3(aq) + 3H_2O(l)$$

**D** PbO (s) + 
$$H_2O(l) + OH^-(aq) \rightarrow Pb(OH)_3^-(aq)$$

A colourless solution contains two cations. When aqueous ammonia was added to the solution, a white precipitate was formed. When excess aqueous ammonia was added, the white precipitate dissolved to form a colourless solution.

Which of the following is not a possible cation in the solution?

A Ca<sup>2+</sup>

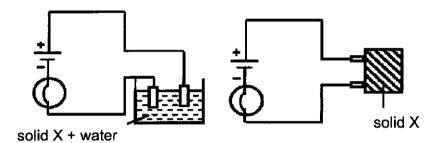
B K<sup>+</sup>

**C** Pb<sup>2+</sup>

**D** Zn<sup>2+</sup>

27 Zinc sulfate was prepared by reacting sulfuric acid with excess zinc oxide. What is the sequence of steps that needs to be carried out to collect the pure and dry salt after the above reaction?

- A crystallisation → filtration
- B distillation → crystallisation
- C filtration → evaporate to dryness
- **D** filtration → air dry


18 Nitrogen dioxide reacts with water according to the following equation

$$2NO_2 + H_2O \rightarrow HNO_2 + HNO_3$$

Which of the following statements correctly describes this reaction?

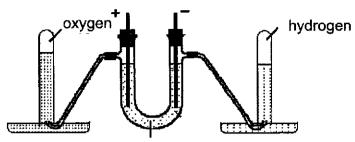
- A NO<sub>2</sub> is reduced to form HNO<sub>3</sub>.
- **B** The oxidation state of N in HNO<sub>2</sub> is +3.
- **C** The reaction is a decomposition reaction.
- **D** Water acts as a catalyst in this reaction.

- Which of the following reactions that takes place in the blast furnace is an acidbase reaction?
  - A  $C + O_2 \rightarrow CO_2$
  - **B**  $CO_2 + C \rightarrow 2CO$
  - C CaO + SiO<sub>2</sub> → CaSiO<sub>3</sub>
  - **D** Fe<sub>2</sub>O<sub>3</sub> + 3CO  $\rightarrow$  2Fe + 3CO<sub>2</sub>
- 20 Two circuits are shown below. The light bulb lights up in only one of the circuits.



What is the identity of X?

A barium sulfate


**B** magnesium

C potassium bromide

- **D** sugar
- In which electrolysis experiment would there be **no** change in pH of the solution when inert electrodes are used?
  - A aqueous copper (II) nitrate
  - B aqueous silver sulfate
  - C concentrated copper (II) chloride solution
  - D concentrated potassium bromide solution
- When aqueous copper (II) sulfate is electrolysed using copper electrodes, which observations are correct?

|   | positive electrode        | negative electrode       | intensity of blue colour of electrolyte |
|---|---------------------------|--------------------------|-----------------------------------------|
| A | electrode becomes smaller | electrode becomes bigger | constant                                |
| В | electrode becomes smaller | gas given off            | fades                                   |
| С | gas given off             | electrode becomes bigger | fades                                   |
| D | gas given off             | gas given off            | constant                                |

23 The diagram shows the electrolysis of dilute sodium chloride solution using inert electrodes.



dilute sodium chloride solution

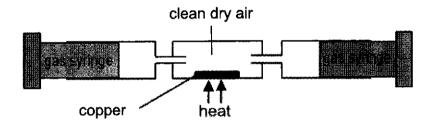
Given that, at room temperature and pressure, *x* moles of electrons were passed in the circuit, which of the following statement is correct?

- A  $6x \, dm^3$  of oxygen was collected at the anode.
- **B**  $6x \, dm^3$  of hydrogen was collected at the cathode.
- C  $12x \text{ dm}^3$  of oxygen was collected at the cathode.
- **D**  $12x \, dm^3$  of hydrogen was collected at the anode.
- Which of the following properties generally decreases when going across a period of the Periodic Table from Group I to Group VII?
  - A The acidity of the oxides.
  - **B** The oxidizing ability of the elements.
  - **C** The number of electrons in the valence shell.
  - D The tendency of the elements to form positive ions.
- **25** Elements X, Y and Z are in the same period of the Periodic Table.

Solid X conducts electricity.

Oxides of Y reacts with both acid and alkali.

Oxides of Z dissolves in water to form solution with pH < 7.


In which order do the elements appear in the Periodic Table?

- $A X \rightarrow Y \rightarrow Z$
- $B \quad Y \to X \to Z$
- $\mathbf{C} \quad \mathsf{Z} \to \mathsf{X} \to \mathsf{Y}$
- $\mathbf{D} \qquad \mathbf{Z} \, \rightarrow \, \mathbf{Y} \, \rightarrow \, \mathbf{X}$

- In the Haber Process, nitrogen and hydrogen react to form ammonia. The following are some statements about the process:
  - I The reaction uses a transition metal as catalyst.
  - II Hydrogen is obtained from the fractional distillation of air.
  - III The temperature used is typically between 400 °C to 500 °C.

Which of the statements are correct?

- A land li only B il and ili only C i and ili only D i, il and ili
- 27 Which of the following reactants will **not** produce ammonia on heating?
  - A ammonium chloride and lithium oxide
  - B ammonium sulfate and hydrochloric acid
  - C ammonium nitrate and potassium hydroxide
  - D ammonium phosphate and calcium hydroxide
- 28 A sample of clean, dry air is passed over hot copper until all the oxygen in the air reacts with the copper. The volume of air decreases by 60 cm<sup>3</sup>.



What is the initial volume of the sample of air?

- **A** 75 cm<sup>3</sup> **B** 120 cm<sup>3</sup> **C** 300 cm<sup>3</sup> **D** 600 cm<sup>3</sup>
- 29 Carbon monoxide is a pollutant emitted from car exhausts. Which of its properties makes it harmful to humans?
  - A It combines with oxygen in the lungs.
  - **B** It forms a stable compound with blood.
  - C It has a corrosive action on lung tissue.
  - D It is odourless, colourless and tasteless.

- 30 Which process removes carbon dioxide from the atmosphere?
  - A combustion of carbon-containing fuel
  - B flue gas desulfurisation
  - C photosynthesis
  - **D** respiration
- 31 The table shows the boiling points of four fractions when crude oil is distilled.

| fraction           | W       | X        | Υ         | Z                   |
|--------------------|---------|----------|-----------|---------------------|
| boiling point / °C | 35 – 75 | 80 – 145 | 150 – 250 | greater than<br>250 |

Which statement regarding the fractions is true?

- A Fraction Y is less flammable than fraction W.
- **B** Fraction Y is less viscous than fraction X.
- C The molecular mass of fraction Z is smaller than that of fraction X.
- **D** The molecules in Z have a shorter chain length than those in fraction Y.
- 32 Which statement correctly describes the members of a homologous series?
  - A They have the same empirical formula.
  - B They have the same physical properties.
  - C They undergo similar chemical reactions.
  - **D** The relative molecular masses of consecutive members differ by 12.
- 33 Which statement about vegetable oil and the margarine made from it is correct?
  - A Both occur naturally.
  - **B** Margarine has the higher melting point.
  - **C** Both are liquids at room temperature and pressure.
  - **D** Vegetable oil has fewer carbon-carbon double bonds than margarine.

34 The following compound X can be converted into the following compound Y.

Which of the following correctly shows the reagents and conditions needed for the conversion?

|   | reagent                    | conditions                      |
|---|----------------------------|---------------------------------|
| Α | hydrogen                   | 200 °C, nickel catalyst         |
| В | concentrated sulfuric acid | heat                            |
| C | steam                      | 300 °C, 60 atm, phosphoric acid |
| D | monomer                    | 450 °C, iron catalyst           |

- Which of the following could **not** be produced when methane reacts with fluorine in the presence of ultraviolet light?
  - A fluoromethane

**B** hydrogen

C hydrogen fluoride

- **D** tetrafluoromethane
- When tetradecane, C<sub>14</sub>H<sub>30</sub>, is cracked, only three hydrocarbons are formed. The hydrocarbons are ethene, propane and propene.

What is the ratio of the hydrocarbons formed?

|   | ethene | propane | propene |
|---|--------|---------|---------|
| Α | 1      | 1       | 1       |
| В | 1      | 2       | 2       |
| С | 1      | 3       | 1       |
| ם | 4      | 1       | 1       |

- 37 Terylene and nylon are man-made fibres. Which of the following is **not** a typical use of such fibres?
  - A clothing
  - B fishing line
  - C food product
  - **D** parachute

38 Apples contain malic acid. The diagram below shows the structural formula of malic acid.

Which of the following salt(s) could be formed upon reacting malic acid with sodium hydroxide?

- I C<sub>4</sub>H<sub>5</sub>O<sub>5</sub>Na
- II C4H4O5Na2
- III C<sub>4</sub>H<sub>3</sub>O<sub>5</sub>Na<sub>3</sub>
- A II onlyC II and III only

- B I and II only
- D I, II and III
- 39 Bone cement, used in artificial hip and knee replacements, is formed by the polymerisation of methyl methacrylate and the process is highly exothermic.

methyl methacrylate

Which statement about bone cement is true?

- A The empirical formula of bone cement is  $C_5H_8O_2$ .
- B Aqueous bromine is decolourised by bone cement.
- C Water is formed in the polymerisation of methyl methacrylate.
- **D** Less energy is released in the formation of C-C bond than the energy absorbed in the breaking of C=C bond.

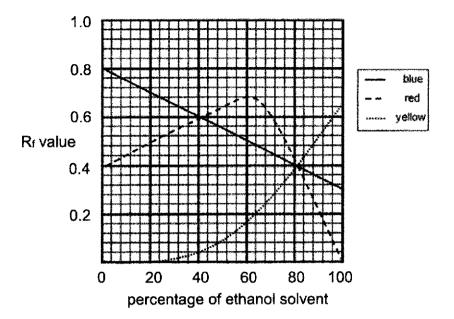
40 The structural formula of compound Z is shown.

compound Z

Which of the following compound is an isomer of compound Z?

**END OF PAPER** 

### Section A


## Answer all questions.

1 The table shows some information about substances A to E.

| substance | melting<br>point / °C | boiling<br>point / °C | Does it conduct electricity when it is a solid? | Does it conduct electricity when molten? |
|-----------|-----------------------|-----------------------|-------------------------------------------------|------------------------------------------|
| Α         | 71                    | 62                    | no                                              | no                                       |
| В         | -8                    | 58                    | no                                              | no                                       |
| С         | 1240                  | 2100                  | yes                                             | yes                                      |
| D         | 1473                  | 1700                  | no                                              | yes                                      |
| E         | 1649                  | 2231                  | no                                              | no                                       |

| (a) | Which substance is most likely to be tungsten(VI) oxide?                                   |     |
|-----|--------------------------------------------------------------------------------------------|-----|
|     |                                                                                            | [1] |
| (b) | Which substance is most likely to be argon?                                                |     |
|     |                                                                                            | [1] |
| (c) | Which substance is most likely to be used as a cutting tool?                               |     |
|     |                                                                                            | [1] |
| (d) | Draw the heating curve of substance B when the temperature increased from -20 °C to 50 °C. |     |

2 A sample of ink contains a mixture of red, blue and yellow dyes. To separate the dyes in the ink, the solvent used is a mixture of water and ethanol. The R<sub>f</sub> values of the coloured dyes in solvents with different percentage of ethanol present are shown.



| . , | What is the R <sub>f</sub> value of the blue dye when a solvent mixture containing 90 cm <sup>3</sup> ethanol and 60 cm <sup>3</sup> water is used in the chromatography? |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | R <sub>f</sub> value of the blue dve:                                                                                                                                     |

[1]

(b) A mixture of water and ethanol was used to separate a sample of this ink. Only one spot was formed on the chromatogram. Using evidence from the graph, explain why it cannot be concluded that the ink sample is a pure substance.

| <br> |
|------|
|      |
|      |
| <br> |
|      |
|      |

......[2

(c) Suggest a suitable method to separate the water and ethanol solvent mixture.

3 The world is trying to reduce the reliance of fossil fuel by exploring alternative fuels. The table below gives some information about the different fuels explored.

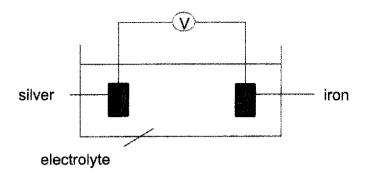
| fuel     | physical state at room temperature | enthalpy change of combustion / | products of complete                 |
|----------|------------------------------------|---------------------------------|--------------------------------------|
|          | and pressure                       | kJ / mol                        | combustion                           |
| hydrogen | gas                                | - 256                           | H <sub>2</sub> O only                |
| methanol | liquid                             | - 715                           | CO <sub>2</sub> and H <sub>2</sub> O |
| methane  | gas                                | - 890                           | CO <sub>2</sub> and H <sub>2</sub> O |

| (0) | The complete comb | ustion of mother | na in raprocented | Lby the following  | a aquation |
|-----|-------------------|------------------|-------------------|--------------------|------------|
| lai | The complete comb | usuon oi memai   | ne is represented | i by the following | g equation |

(i) Calculate the mass of methane that needs to be combusted to produce 3115 kJ of heat.

[1]

|     | (11) | change for the complete combustion of methane has a negative sign.                                                                                               |     |
|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |      |                                                                                                                                                                  |     |
|     |      |                                                                                                                                                                  |     |
|     |      |                                                                                                                                                                  | [2  |
| (b) | disa | ng only information from the table, state one advantage and one dvantage of using methanol as a fuel compared to hydrogen apart from the bunt of heat given out. |     |
|     | adva | antage:                                                                                                                                                          |     |
|     |      | ······································                                                                                                                           |     |
|     | disa | dvantage:                                                                                                                                                        |     |
|     |      |                                                                                                                                                                  | F0: |


|   | (c)          | Draw an energy profile diagram for the complete combustion of hydrogen. Indicate the enthalpy change, $\Delta H$ and activation energy, $E_a$ on the diagram clearly.                                      |
|---|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |              | energy / kJ                                                                                                                                                                                                |
|   |              | → progress of reaction [3]                                                                                                                                                                                 |
| 4 | due          | alumin is a mixture of aluminium with copper. It is used mainly in machine parts to its high strength and hardness compared to aluminium. However, duralumin is e susceptible to corrosion than aluminium. |
|   | (a)          | State the name given to mixtures such as duralumin.                                                                                                                                                        |
|   | <i>a</i> . \ | [1]                                                                                                                                                                                                        |
|   | (b)          | Explain why duralumin is harder than aluminium.                                                                                                                                                            |
|   |              | [2]                                                                                                                                                                                                        |
|   | (c)          | Explain why duralumin corrodes more easily than aluminium.                                                                                                                                                 |
|   |              | [2]                                                                                                                                                                                                        |
|   | (d)          | Recycling of metals has been encouraged as a way to produce useful metals instead of extracting them from their ores. Explain why.                                                                         |
|   |              |                                                                                                                                                                                                            |

| 5 | Acidified potassium manganate(VII) reacts with excess sodium ethanedioate. The state of the stat | he |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | ionic equation of the reaction is shown below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |

| 2 Mr | $1004^{-}$ (aq) + 16 H <sup>+</sup> (aq) + 5 C <sub>2</sub> O <sub>4</sub> <sup>2-</sup> (aq) $\rightarrow$ 2 Mn <sup>2+</sup> (aq) + 8 H <sub>2</sub> O ( $l$ ) + 10 CO <sub>2</sub> (g) |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a)  | Describe two observations in this experiment.                                                                                                                                             |
|      |                                                                                                                                                                                           |
|      | [2]                                                                                                                                                                                       |
| (b)  | State and explain, in terms of oxidation state, which chemical species is the reducing agent.                                                                                             |
|      |                                                                                                                                                                                           |
|      |                                                                                                                                                                                           |

(c) Calculate the volume of CO<sub>2</sub> produced at r.t.p given that 25.0 cm<sup>3</sup> of 0.5 mol/dm<sup>3</sup> of potassium manganate(VII) was used.

6 The diagram shows a simple cell set-up.



Complete the table by filling in the missing information.

| electrolyte used          | electrodes used | product formed at positive electrode | product formed at negative electrode |
|---------------------------|-----------------|--------------------------------------|--------------------------------------|
| aqueous sodium<br>nitrate | silver and iron |                                      |                                      |
|                           | silver and iron | silver                               |                                      |

[3]

7 A colorimeter measures the intensity of light that is absorbed by a coloured solution. The darker the colour of the solution, the more light is absorbed and the higher the reading on the colorimeter.

In experiment 1, fluorine gas was bubbled into aqueous potassium bromide for 6 minutes. The reaction mixture was measured with a colorimeter over time.

| (a) | Describe and explain how the colorimeter reading changes as the reaction takes place. |
|-----|---------------------------------------------------------------------------------------|
|     |                                                                                       |
|     |                                                                                       |
|     |                                                                                       |
|     |                                                                                       |
|     | [3]                                                                                   |

| (b) |     | experiment<br>tassium chlo |      | •         | •          |          | was   | replaced   | with  | aqueous     |
|-----|-----|----------------------------|------|-----------|------------|----------|-------|------------|-------|-------------|
|     | (i) | Draw a 'do                 | ot-a | nd-cross' | diagram to | show the | bondi | ng in pota | ssium | n chloride. |

Show only the valence electrons.

| (ii) | State one similarity and one difference in the experimental result between experiments 1 and 2. | 1 |
|------|-------------------------------------------------------------------------------------------------|---|
|      | Similarity:                                                                                     |   |
|      |                                                                                                 |   |
|      | Difference:                                                                                     |   |
|      |                                                                                                 |   |

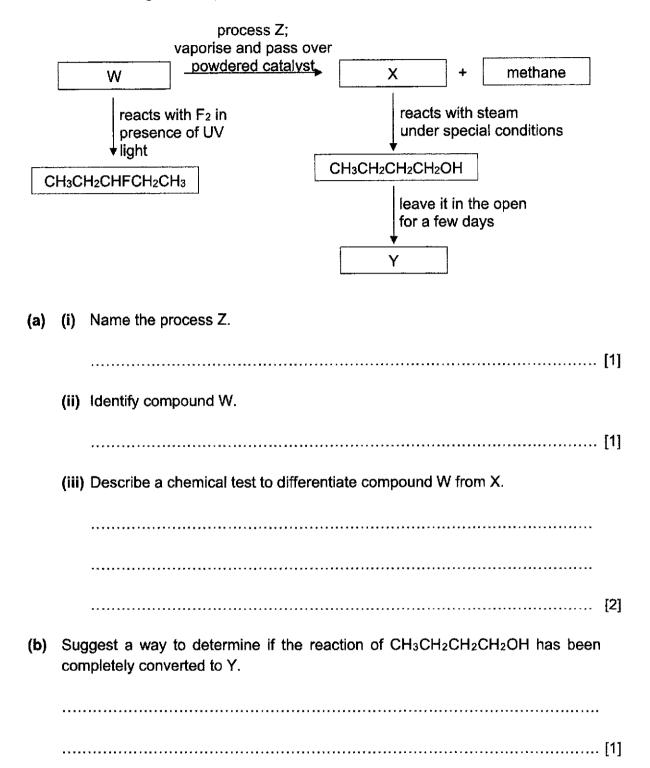
[2]

8 Hydrated copper(II) sulfate has the chemical formula, CuSO<sub>4</sub>•xH<sub>2</sub>O where x can range from 0 to 5. The pentahydrate (CuSO<sub>4</sub>•5H<sub>2</sub>O) is the most commonly encountered salt.

A sample of CuSO<sub>4</sub>•5H<sub>2</sub>O was heated over time to slowly remove the water of crystallisation. After some time it was noted that the mass of the sample decreased by 15% and CuSO<sub>4</sub>•5H<sub>2</sub>O was converted to compound P.

(a) Suggest the chemical formula for compound P. Show your working clearly. [Mr CuSO<sub>4</sub>.5H<sub>2</sub>O = 250]

| chemical formula of | compound P: | [2 | 2] |
|---------------------|-------------|----|----|
|---------------------|-------------|----|----|


(b) On further heating of the sample till 950 °C, it decomposed to form copper(II) oxide. Copper(II) oxide is then further heated with carbon in a glass tube to produce a gas and molten copper.

copper(II) oxide and carbon



| (1)   | write an equation for the reaction between copper(11) oxide and carbon.                                                     |     |
|-------|-----------------------------------------------------------------------------------------------------------------------------|-----|
|       |                                                                                                                             | [1] |
| (ii)  | Molten copper(II) oxide and copper conduct electricity differently. Describe how they conduct electricity differently.      | !   |
|       |                                                                                                                             |     |
|       |                                                                                                                             | [1] |
| (iii) | The conduction of electricity can have different effects on copper and on molten copper(II) oxide. Describe the difference. | I   |
|       |                                                                                                                             |     |
|       |                                                                                                                             | [1] |

9 The reaction of organic compound W is shown below.



#### **Section B**

Answer all three questions in this section.

The last question is in the form **either/or** and only one of the alternative should be attempted.

10 The structural formula of the artificial sweetener, aspartame, is shown below.

(a) Name two functional groups present in aspartame.

.....[1]

(b) Aspartame is hydrolysed in the stomach to produce methanol as well as the amino acids aspartic acid and phenylalanine.

Hydrolysis involves the reaction of an organic compound with water to form two or more new products through breakage of bonds in the organic compound.

Two of the products of hydrolysis of aspartame are shown below:

$$\begin{array}{c|c} H & O \\ H-N-C-C-OH \\ H & CH_2 \\ H & CH_5 \\ \end{array}$$
 methanol phenylalanine

(i) Draw the structural formula of aspartic acid.

(ii) The full structural formulae of ethanol and propanol are shown below:

| name of compound | full structural formula       |
|------------------|-------------------------------|
| ethanol          | H H<br>H-C-C-O-H<br>H H       |
| propanol         | H H H<br>H-C-C-C-O-H<br>H H H |

|     |      | Explain why methanol, ethanol and propanol belong to the same homologous series.                                   |
|-----|------|--------------------------------------------------------------------------------------------------------------------|
|     |      |                                                                                                                    |
|     |      |                                                                                                                    |
|     |      | [2]                                                                                                                |
| (c) |      | en warmed in the presence of concentrated sulfuric acid, methanol reacts propanoic acid to form water and ester P. |
|     | (i)  | Name ester P.                                                                                                      |
|     |      | [1]                                                                                                                |
|     | (ii) | Esters are commercially used in perfumes for its aromatic property.                                                |
|     |      | State one other commercial use of ester.                                                                           |
|     |      | [1]                                                                                                                |
| (d) |      | acromolecule can be formed from phenylalanine undergoing condensation merisation as a single monomer.              |
|     | (i)  | Define the term 'macromolecule'.                                                                                   |
|     |      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                            |
|     |      | [1]                                                                                                                |

(ii) Draw the structural formula of the polymer formed from the monomer phenylalanine, showing two repeating units.

[1]

#### 11 Reaction Rates

The reaction between colourless peroxodisulfate(VI) ions and iodide ions is represented by the following ionic equation.

$$S_2O_8^{2-}$$
 (aq) + 2|- (aq)  $\rightarrow 2SO_4^{2-}$  (aq) + |<sub>2</sub> (aq)

The same volume of aqueous S<sub>2</sub>O<sub>8</sub><sup>2-</sup> and aqueous I<sup>-</sup> are used for each experiment.

The table below shows the results of each experiment when different concentrations of each reactant are used.

| experiment | initial conc<br>mol/                        |       | initial rate of reaction / mol/dm³s |
|------------|---------------------------------------------|-------|-------------------------------------|
|            | S <sub>2</sub> O <sub>8</sub> <sup>2-</sup> |       |                                     |
| 1          | 0.008                                       | 0.020 | 1.22 x 10 <sup>-3</sup>             |
| 2          | 0.016                                       | 0.020 | 2.44 x 10 <sup>-3</sup>             |
| 3          | 0.032                                       | 0.020 | 4.88 x 10 <sup>-3</sup>             |
| 4          | 0.008                                       | 0.040 | 2.44 x 10 <sup>-3</sup>             |
| 5          | 0.008                                       | 0.080 | 4.88 x 10 <sup>-3</sup>             |

#### **Order of Reactions**

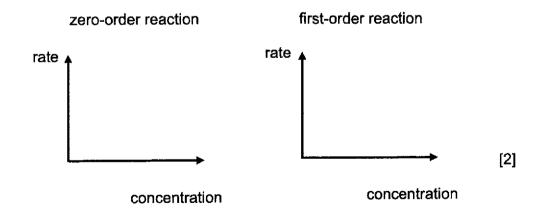
The order of a reaction refers to the power dependence of the rate of reaction on the concentration of each reactant. It is a numerical value.

In a zero-order reaction, the concentration of the reactants has no effect on the initial rate of reaction.

In a first-order reaction, the initial reaction rate is directly proportional to the concentration of one of the reactants.

In a second-order reaction, the initial rate of reaction quadruples when the concentration of one of the reactants is doubled.

#### Increasing the rate of reaction


If a small amount of  $Fe^{2+}$  ions is added to the reaction mixture, the rate of reaction will increase.  $Fe^{2+}$  will react with the peroxodisulfate(VI) ions, forming  $Fe^{3+}$  ions, which will then react with the iodide ions in the following two stages:

Stage 1: 
$$2Fe^{2+}(aq) + S_2O_8^{2-}(aq) \rightarrow 2Fe^{3+}(aq) + 2SO_4^{2-}(aq)$$

Stage 2: 
$$2Fe^{3+}(aq) + 2I^{-}(aq) \rightarrow 2Fe^{2+}(aq) + I_2(aq)$$

|     |      | 10                                                                                                     |
|-----|------|--------------------------------------------------------------------------------------------------------|
| (a) | (i)  | Suggest a method to measure the rate of reaction between peroxodisulfate(VI) ions and iodide ions.     |
|     |      | [1]                                                                                                    |
|     | (ii) | Two students made comments about the reaction.                                                         |
|     |      | Student 1: The reaction is first order with respect to S <sub>2</sub> O <sub>8</sub> <sup>2-</sup> .   |
|     |      | Student 2: The reaction is second order with respect to I <sup>-</sup> .                               |
|     |      | Which student is correct? Show by calculation using information from the table to support your answer. |
|     |      |                                                                                                        |
|     |      |                                                                                                        |
|     |      |                                                                                                        |
|     |      |                                                                                                        |
|     |      |                                                                                                        |
|     |      | [3]                                                                                                    |
|     |      |                                                                                                        |

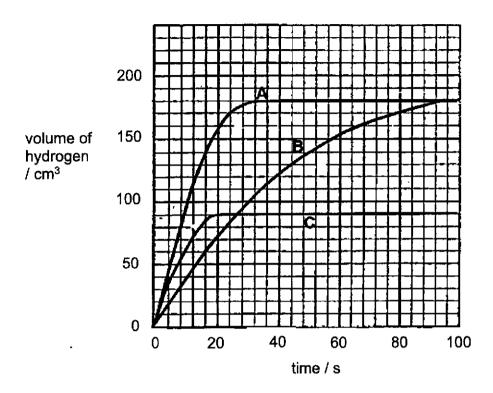
(iii) Sketch the graphs of rate against concentration of reactant for a zero-order and a first-order reaction.



(iv) Another two similar experiments were carried out.

| experiment | concentration                                    | concentration of    | initial rate of         |
|------------|--------------------------------------------------|---------------------|-------------------------|
|            | of S <sub>2</sub> O <sub>8</sub> <sup>2-</sup> / | 1-/                 | reaction /              |
|            | mol/dm³                                          | mol/dm <sup>3</sup> | mol/dm³s                |
| 6          | 0.016                                            | 0.040               |                         |
| 7          |                                                  | 0.080               | 9.76 X 10 <sup>-3</sup> |

|     |      | Predict the initial rate of reaction in experiment 6 and the concentration of $S_2O_8^{2-}$ in experiment 7. |     |
|-----|------|--------------------------------------------------------------------------------------------------------------|-----|
|     |      | initial rate for experiment 6:                                                                               |     |
|     |      | concentration of S <sub>2</sub> O <sub>8</sub> <sup>2-</sup> in experiment 7:                                | [2] |
| (b) | (i)  | Explain the role of Fe <sup>2+</sup> ions when added into the reaction mixture.                              |     |
|     |      |                                                                                                              |     |
|     |      |                                                                                                              | [2] |
|     | (ii) | Suggest a way to remove Fe <sup>2+</sup> ions from aqueous iodine after Stage 2.                             |     |
|     |      |                                                                                                              |     |
|     |      |                                                                                                              |     |
|     |      |                                                                                                              |     |


| _ |   |    |   | _ | _ |
|---|---|----|---|---|---|
| ⊏ | 1 | ГŁ | - |   |   |
|   |   |    |   |   |   |

| EK  |              |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----|--------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |              | • .                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8   | Stage        | 1 – nickel(II) sulfide is heated in air to form nickel(II) oxide and sulfur dioxide                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | _            | 3 – impure nickel is reacted with carbon monoxide to make nickel                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5   | Stage -      |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (a) | (i)          | Construct the balanced equation for the reaction in stage 1.                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |              |                                                                                                           | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | (ii)         | Calculate the mass of sulfur dioxide that is formed when 182 kg or $nickel(II)$ sulfide is heated in air. | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     |              |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |              |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |              |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |              |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |              |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |              |                                                                                                           | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (b) | •            |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |              |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |              |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |              |                                                                                                           | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | Nick<br>nick | Nickel is a nickel(II) s  Stage 2  Stage 3  Stage 4  (a) (i)                                              | Nickel is a transition element. It is manufactured in a four-stage process from nickel(II) sulfide, NiS.  Stage 1 – nickel(II) sulfide is heated in air to form nickel(II) oxide and sulfur dioxide  Stage 2 – nickel(II) oxide is heated with carbon to give impure nickel  Stage 3 – impure nickel is reacted with carbon monoxide to make nickel tetracarbonyl, Ni(CO) <sub>4</sub> Stage 4 – nickel tetracarbonyl is decomposed to give pure nickel  (i) Construct the balanced equation for the reaction in stage 1.  (ii) Calculate the mass of sulfur dioxide that is formed when 182 kg of nickel(II) sulfide is heated in air. |

| Nickel tetra              | acarbonyl is a liqui                    | d with a boiling point of                                        | 43 C.                                                           |
|---------------------------|-----------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|
| Suggest, v<br>tetracarbor |                                         | ne type of structure a                                           | and bonding in nicke                                            |
| **********                | • • • • • • • • • • • • • • • • • • • • |                                                                  |                                                                 |
|                           |                                         |                                                                  |                                                                 |
|                           |                                         |                                                                  |                                                                 |
| in an exp                 | eriment. small an                       | nounts of three metals                                           | were added to thre                                              |
| •                         |                                         | ns. The results are sho                                          |                                                                 |
|                           | aqueous zinc<br>nitrate                 | aqueous nickel(II)                                               | aqueous copper(II)                                              |
| zinc                      | no reaction                             | green solution turn<br>colourless and zinc<br>coated with a grey | blue solution turn<br>colourless and zinc<br>coated with a pink |
| nickel                    |                                         | solid<br>no reaction                                             | solid                                                           |
|                           | no reaction                             | no reaction                                                      | no reaction                                                     |
| copper                    |                                         | 110 Teaction                                                     | no reaction                                                     |
| Predict the               | observations whe                        | en nickel is added to                                            |                                                                 |
| (i) zinc                  | nitrate solution                        |                                                                  |                                                                 |
| *****                     |                                         |                                                                  |                                                                 |
| (ii) copp                 | er(II) nitrate soluti                   | on                                                               |                                                                 |
|                           |                                         |                                                                  |                                                                 |
|                           |                                         |                                                                  |                                                                 |

OR

In experiment 1, 0.488 g of zinc was reacted with two acids, hydrochloric acid and sulfuric acid separately. The volume and concentration of the acids used were both 20.0 cm³ and 2.00 mol/dm³. The curves A and B shown in the graph below show the results of the reactions.



In experiment 2, a similar reaction with an unknown mass of zinc and 20.0 cm<sup>3</sup> of a 2.00 mol/dm<sup>3</sup> acid was conducted. Curve C shows the result of the reaction.

(a) Explain, with relevant calculations, why the same volume of gas was produced for both curves A and B.

| <br> | <br>*************************************** |
|------|---------------------------------------------|
| <br> | <br>                                        |
|      | <br>[3]                                     |

| (b) |       | veen curves A and B, identify the curve for the reaction that used sulfuric Explain your choice.                                                                                               |     |
|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |       |                                                                                                                                                                                                |     |
|     |       |                                                                                                                                                                                                | ro1 |
|     |       |                                                                                                                                                                                                | [2] |
| (c) | Give  | n that either sulfuric acid or hydrochloric acid was used to obtain curve C,                                                                                                                   |     |
|     | (i)   | identify the acid used and state your reasoning.                                                                                                                                               |     |
|     |       |                                                                                                                                                                                                | [1] |
|     | (ii)  | calculate the mass of zinc used.                                                                                                                                                               |     |
|     |       |                                                                                                                                                                                                |     |
|     |       |                                                                                                                                                                                                |     |
|     |       |                                                                                                                                                                                                | [1] |
| (d) | and   | eriment 2 was repeated using the same mass of zinc and the same volume concentration of the acid, but this time, a small amount of copper(II) sulfate tals were added to the reaction mixture. |     |
|     |       | rvescence was observed and a brown deposit was formed. The volume of ogen collected was slightly less than in experiment 2.                                                                    |     |
|     | With  | the aid of an equation, explain why less hydrogen was collected.                                                                                                                               |     |
|     | ***** | •••••••••••••••••••••••••••••••••••••••                                                                                                                                                        |     |
|     |       |                                                                                                                                                                                                |     |
|     |       |                                                                                                                                                                                                |     |
|     |       | •••••••••••••••••••••••••••••••••••••••                                                                                                                                                        |     |
|     |       |                                                                                                                                                                                                | [3] |

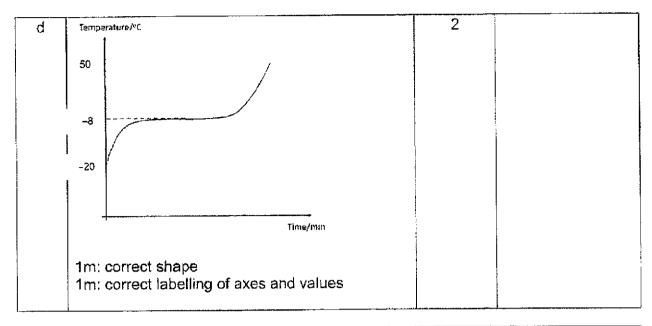
The Periodic Table of Elements

|              | checode                                 |                |          |               |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |    |          |            |      |    |     |            |    |          |          |            |     |          | *********** |          |      |        |                | *****         |      |
|--------------|-----------------------------------------|----------------|----------|---------------|---------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----|----------|------------|------|----|-----|------------|----|----------|----------|------------|-----|----------|-------------|----------|------|--------|----------------|---------------|------|
| c            | 0                                       | N              | <u> </u> | fællum<br>4   | 10                  | ž             | neon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2            | \$ | ₹        | argon      | 40   | 36 | ₹   | krypton    | 쫎  | ጀ        | s<br>×   | xenon      | 131 | 86       | 듄           | ractor   | l    |        |                |               |      |
| 157          | =                                       |                |          |               | G                   | ы.            | fluorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del>(</del> | 17 | ວ        | chitorine  | 35.5 | 35 | à   | bromine    | 90 | £        | _        | iodine     | 127 | 85       | ¥           | astatine | al a |        |                |               |      |
| 153          | >                                       |                |          |               | 8                   | 0             | axygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9            | 16 | ဟ        | Suffer     | 32   | ¥  | ø   | selenium   | 62 | 23       | <u>a</u> | tellurium  | 128 | \$       | S.          | mnjuolod | 1    | 116    | <u>ک</u>       | ivermonum     | ļ    |
|              | >                                       |                |          |               | 7                   | z             | nitragen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4            | 15 | <u>a</u> | phosphorus | સ    | 33 | As  | arsenic    | 73 | 51       | දි       | antimony   | 122 | æ        | ö           | bismuth  | 508  |        |                |               |      |
| N N          | ≥                                       |                |          |               | 9                   | ပ             | carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12           | 14 | ග        | silicon    | 28   | 32 | නී  | germanitan | £  | 20       | ર્જ      | £          | 119 | 8        | 6           | lead     | 207  | 114    | ū              | llerovium.    | ţ    |
| =            | =                                       |                |          |               | 20                  | 00            | boron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ÷            | 5  | ¥        | aluminium  | 27   | 3  | g   | gallfurn   | 70 | 49       | =        | indium     | 115 | <u>~</u> | Ĕ           | mailium  | 첧    |        |                |               |      |
|              |                                         |                |          |               | <b></b>             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |    |          |            |      | 30 | ۲Z  | zinc       | 65 | 48       | ខ        | cadmium    | 112 | 8        | 웃           | mercuny  | 231  | 112    | 5              | copernicium   | 1    |
|              |                                         |                |          |               |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |    |          |            |      | 28 | 3   | redition   | 64 | 47       | Ag       | silver     | 108 | 62       | Ϋ́          | pold     | 197  | 111    | ĝ              | centgenium    | 1    |
| <del>g</del> |                                         |                |          |               |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |    |          |            |      | 28 | Z   | nickel     | 20 | 46       | P        | perhadium  | 106 | 82       | ۵           | platinum | 195  | 110    | O <sub>s</sub> | darmstadhum   | -    |
| Group        |                                         |                |          |               |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |    |          |            |      | 27 | රි  | Medoo      | 65 | \$       | 듄        | moden      | 103 | 11       | ×           | molina   | 192  | 109    | W              | meitnerium    | 1    |
|              | *************************************** | <del>-</del> ; | I        | hydrogen<br>1 |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |    |          |            |      | 56 | æ   | nou        | 99 | 4        | 2        | питения    | 19  | 2        | ర           | oemium   | 8    | 108    | £              | ELDINGE.      | 1    |
|              |                                         |                |          |               | J                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |    |          |            |      | 52 | ž   | manganese  | 8  | <b>₽</b> | ည        | technetium | *   | £        | æ           | menium   | 186  | 107    | 튭              | potrum        | -    |
|              | *************************************** |                |          |               | mber                | ত             | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nass         |    |          |            |      | 24 | Ö   | chromium   | 25 | 42       | Š        | такраенит  | 96  | 7.7      | 3           | tungaten | 184  | 106    | Ŝ              | mnibiogeas    | i    |
|              |                                         |                |          | Key           | proton (atomic) num | atomic symbol | STATE OF THE STATE | re atomic r  |    |          |            |      |    |     |            |    |          |          |            | 1   |          |             |          | - 1  | 105    |                |               | - 4  |
|              |                                         |                |          |               | proton              | ato           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | relativ      |    |          |            |      | 22 | F   | Menium     | 48 | 40       | Σľ       | zircontum  | 91  | 22       | Ĭ           | hathlum  | 178  | 104    | ₹              | Rutherfordium | **** |
|              |                                         |                |          |               |                     |               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |    |          |            |      | 24 | တ္တ | *candium   | ₹  | 83       | >        | yffrium    | 83  | 57-71    | sprinanoids |          |      | 89 103 | actinoids      |               |      |
| 4            | =                                       |                |          |               | 4                   | 86            | beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | රා           | 12 | Ş        | magnesium  | 24   | 8  | రొ  | catcium    | 6  | 88       | ത്       | stronitum  | 88  | 26       | æ           | parlum   | 137  | 88     | Ra             | redium        | ŧ    |
| -            | _                                       |                |          |               | 63                  | J             | Whater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7            | 11 | ž        | sodium     | 83   | 10 | ×   | potassium  | æ  | 37       | 2        | mpipiqu    | 82  | 55       | ඊ           | caesium  | 133  | 87     | ï              | francium      | ı    |

| nthanoids | 25        | 99      | 59           | 9         | 64         | 62       | 63               | 64         | 65        | 99          | 67          | 88      | 99          | 7.0       | 7.1       |
|-----------|-----------|---------|--------------|-----------|------------|----------|------------------|------------|-----------|-------------|-------------|---------|-------------|-----------|-----------|
|           | 2         | ဗီ      | å            | ž         | E.         | S        | 岀                | g          | ۵         | റ്          | 운           | ш       | Ę           | ۶         | 3         |
|           | fanthamum | cecinm  | ражеодунікан | neodymium | promethium | samanum  | europium         | gadolinium | terbium   | dysprosium  | holmium     | erbium  | Mullum      | viterbium | lutetium  |
|           | 139       | 140     | 14           | 4         | 1          | 35       | 33               | 157        | 158       | 163         | 165         | 167     | 169         | 173       | 175       |
| ctinoids  | 88        | 6       | 16           | 83        | 83         | 8        | 95               | 96         | 97        | 88          | 86          | 100     | 101         | 102       | 103       |
|           | Ac        | £       | ď            | >         | ž          | 2        | Am               | ర్         | 番         | ប៊          | ű           | £       | ğ           | ž         | ۲         |
|           | actinium  | thorium | protactinium | araniam   | กสุดนาเนก  | mnucanid | <b>Britishin</b> | CHATCHEN   | berkeitum | ealifornium | einsteintum | fermium | mendelevium | nobelium  | Inversion |
|           | 1         | 232     | 231          | 238       | 1          | 1        | 29               | 1          | ***       | 1           | 1           | 1       | ı           | J         | 1         |

The volume of one mole of any gas is 24 dm<sup>3</sup> at room temperature and pressure (r.t.p.).

END OF PAPER


# Admiralty Secondary School Marking Scheme 4E Pure Chemistry (Paper 1 and 2) PRELIMINARY EXAMINATION 2021

#### PAPER 1 [40 marks]

| 1  | 2  | 3  | 4                | 5  | 6  | 7  | 8  | 9  | 10 |
|----|----|----|------------------|----|----|----|----|----|----|
| С  | D  | С  | А                | А  | С  | А  | D  | D  | В  |
|    |    |    |                  |    |    |    |    |    |    |
| 11 | 12 | 13 | 14               | 15 | 16 | 17 | 18 | 19 | 20 |
| В  | В  | В  | D                | D  | С  | С  | В  | С  | С  |
| 04 | 20 | 00 | 24               | 25 | 26 | 27 | 28 | 29 | 20 |
| 21 | 22 | 23 | 24               | 25 | 26 | 27 | 20 | 29 | 30 |
| С  | А  | Α  | D                | А  | С  | В  | С  | В  | С  |
|    |    |    | ~- <del>~~</del> |    |    |    |    |    |    |
| 31 | 32 | 33 | 34               | 35 | 36 | 37 | 38 | 39 | 40 |
| Α  | O  | В  | Α                | В  | D  | С  | В  | A  | С  |

## PAPER 2 SECTION A [50 marks]

| Qn. | Description | Mark | Remarks |
|-----|-------------|------|---------|
| 1a  | D           | 1    |         |
| b   | A           | 1    |         |
| C   | E           | 1    |         |



| Qn. | Description                                                                                                | Mark | Remarks                |
|-----|------------------------------------------------------------------------------------------------------------|------|------------------------|
| 2a  | 0.50                                                                                                       | 1    |                        |
| b   | The sample could be a mixture of three dyes if the solvent used is 80% ethanol.                            | 1    |                        |
|     | This is because only one spot will be observed as all three dyes have the same R <sub>f</sub> value of 0.4 | 1    |                        |
| С   | Fractional distillation                                                                                    |      | A: simple distillation |

| Qn. | Description                                                                                                                                                                                                                               | Mark | Remarks                                                                                                                                                          |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3ai | No of moles of methane = 3115/890<br>= 3.5 mol                                                                                                                                                                                            |      |                                                                                                                                                                  |
|     | Mass of methane = 3.5 X 16<br>= 56g                                                                                                                                                                                                       | 1    |                                                                                                                                                                  |
| ali | The energy taken in to break 4 mol C-H bond and 2 mol O=O bond is less than the energy give out in the bond formation of 2 mol C=O bond and 4 mol O-H bond. Hence the reaction is exothermic and has a negative sign for enthalpy change. | 2    | 1m: compare energy taken in and given out  1m: relate energy taken in to that of bond breaking of the reactants and energy given out as bond forming of products |

| b Advantage: Methanol is a liquid while hydrogen is a gas at rtp. Easier to transport methanol as transporting hydrogen would require use of pressurised tanks                         | 1 |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| Disadvantage: Burning methanol releases carbon dioxide which is a greenhouse gas. While burning hydrogen produces only water which is non-pollutive                                    | 1 |  |
| Progress of reaction  [1 mark for correct shape of graph, 1 mark for correct labelling of reactant and product, 1 mark for correct labelling of enthalpy change and activation energy] | 3 |  |

| Qn. | Description                                                                                                                                                                                                                                                                                                                      | Mark | Remarks |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|
| 4a  | Alloy                                                                                                                                                                                                                                                                                                                            | 1    |         |
| b   | Aluminium consists of aluminiums atoms arranged in orderly layers. These layers can slide easily when a force is applied.  While duralumin contains atoms of different sizes that disrupt the orderly arrangement of the atoms. Hence the atoms cannot slide over each other easily when a force is applied. Hence it is harder. | 2    |         |
|     | 1m: describe correctly the arrangement of atoms in aluminium and duralumin.                                                                                                                                                                                                                                                      |      |         |
|     | 1m: describe correctly the ease of atoms sliding over each other when a force is applied.                                                                                                                                                                                                                                        |      |         |

| С | Aluminium is more reactive than copper.                                             | 1 |                               |
|---|-------------------------------------------------------------------------------------|---|-------------------------------|
|   | Hence it acts as a sacrificial metal protection for copper and corrode much easily. | 1 |                               |
| d | To conserve metal as it is a finite resource                                        | 1 | A: any other plausible reason |
|   | or                                                                                  |   |                               |
|   | To reduce pollution as extraction of metal might produce harmful waste products     |   |                               |

| Qn. | Description                                                                                                                                                                                            | Mark | Remarks |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|
| 5a  | Purple solution turned colourless.                                                                                                                                                                     | 1    |         |
|     | 2. Effervescence observed.                                                                                                                                                                             | 1    |         |
| b   | C <sub>2</sub> O <sub>4</sub> <sup>2</sup> -is the reducing agent.                                                                                                                                     | 1    |         |
|     | C <sub>2</sub> O <sub>4</sub> <sup>2-</sup> is oxidised to form CO <sub>2</sub> . The oxidation state of C increases from +3 in C <sub>2</sub> O <sub>4</sub> <sup>2-</sup> to +4 in CO <sub>2</sub> . | 1    |         |
| C   | No. of moles of KMnO4 used<br>= 25/1000 x 0.5<br>= 0.0125 mol                                                                                                                                          | 1    |         |
|     | No. of moles of CO <sub>2</sub> produced<br>= 0.0125 x (10/2)<br>= 0.0625 mol                                                                                                                          | 1    |         |
|     | Volume of CO2 produced<br>= 0.0625 x 24<br>= 1.50 dm <sup>3</sup>                                                                                                                                      | 1    |         |

| Qn. |                                | Descri                 | ption                                         |                                      | Mark | Remarks |
|-----|--------------------------------|------------------------|-----------------------------------------------|--------------------------------------|------|---------|
| 6   | electrolyte<br>used            | electrodes<br>used     | product<br>formed at<br>positive<br>electrode | product formed at negative electrode | 3    |         |
|     | aqueous<br>sodium<br>nitrate   | silver and<br>iron     | hydrogen                                      | iron ions                            |      |         |
|     | any silver<br>salt<br>solution | silver and<br>iron     | silver                                        | iron ions                            |      |         |
|     | `                              | 1m: electoroduct at po | sitive electro                                | i                                    |      |         |
|     | 1m. p                          | product at ne          | gative electr                                 | ode                                  |      |         |

| Qn. | Description                                                                                                                                               | Mark | Remarks |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|
| 7a  | Reading increase over time as more bromine is formed.                                                                                                     | 1    |         |
|     | Fluorine is more reactive than bromine, hence fluorine displaces bromine from potassium bromide solution to form bromine and potassium fluoride solution. | 1    |         |
|     | Solution turns from <u>colourless to reddish brown over</u> <u>time</u> causing the reading to increase                                                   | 1    |         |
| bi  | Tm: cation 1m: anion                                                                                                                                      | 2    |         |
| bii | Similarity: reading increases over time                                                                                                                   | 1'   |         |
|     | Difference: reading is higher in experiment 1 than in experiment 2                                                                                        | 1    |         |

| Qn.  | Description                                                                                                                | Mark | Remarks |
|------|----------------------------------------------------------------------------------------------------------------------------|------|---------|
| 8a   | From graph, % mass loss = 15%                                                                                              |      |         |
|      | Mass loss = 250 x 15%<br>= <u>37.5</u><br>≈ mass of 2 mol of water molecules                                               | 1    |         |
|      | Chemical formula of P : CuSO₄.3H₂O                                                                                         | 1    |         |
| bì   | 2CuO + C → 2Cu + CO <sub>2</sub>                                                                                           | 1    |         |
| bii  | Molten R conducts electricity with free mobile ions while molten S conducts electricity with mobile/delocalised electrons. | 1    |         |
| biii | S will remain unchanged while R will be electrolysed/decomposed.                                                           | 1    |         |

| Qn.  | Description                                                                                                                                                                                                 | Mark | Remarks |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|
| 9ai  | Cracking                                                                                                                                                                                                    | 1    |         |
| aii  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                                                                                                             |      |         |
| aili | Add <u>aqueous bromine</u> to both W and X.  If reddish brown aqueous bromine turns from <u>brown to colourless rapidly</u> , sample is X,  If aqueous bromine <u>remains reddish brown</u> , sample is W.  | 1    |         |
| b    | By adding acidified potassium manganate (VII) to mixture. If it remains purple, it means all have been converted.  Or  By checking whether the substance boils at the fixed boiling point of butanoic acid. | 1    |         |

## PAPER 2 SECTION B [30 marks]

| Qn. | Description                                                                                                                                                                                                                             | Mark | Remarks |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|
| 10a | Carboxylic acid                                                                                                                                                                                                                         | 1    |         |
|     | Amide                                                                                                                                                                                                                                   |      |         |
| 1   | • Ester                                                                                                                                                                                                                                 |      |         |
|     | • Amine                                                                                                                                                                                                                                 |      |         |
|     | Any two of the above.                                                                                                                                                                                                                   |      |         |
| bi  |                                                                                                                                                                                                                                         | 1    |         |
|     | OH-C-CH <sub>2</sub> -C-COOH THE                                                                                                                                                                                                        |      |         |
| bii | <ul> <li>They have the same general formula,         C<sub>n</sub>H<sub>2n+1</sub>OH.</li> <li>They contain the same -O - H functional group</li> <li>Each successive member of the series differ by a -CH<sub>2</sub> unit.</li> </ul> | 2    |         |
|     | Any two of the above.                                                                                                                                                                                                                   | ,    |         |
| ci  | Methyl propanoate                                                                                                                                                                                                                       | 1    |         |
| cii | <ul><li>Used in flavourings</li><li>Used as solvents</li></ul> Any one above                                                                                                                                                            | 1    |         |
| di  | Macromolecules are large molecules built up from small units/molecules                                                                                                                                                                  | 1    | ,       |
| dii | H O H O III III III III III III III III                                                                                                                                                                                                 | 1    |         |

| Qn.  | Description                                                                                                                                                                     | Mark                                   | Remarks |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------|
| 11ai | Measure the change in colour of the solution due to the formation of I <sub>2</sub> over time                                                                                   | 1                                      |         |
|      | or                                                                                                                                                                              |                                        |         |
|      | Measure the change in electrical conductivity of solution over time                                                                                                             |                                        |         |
| aii  | Student 1 is correct.  Comparing experiment 1 & 2, when the concentration of S <sub>2</sub> O <sub>8</sub> <sup>2-</sup> is doubled, the initial rate of reaction also doubles. | 1                                      |         |
|      | 2.44 X 10 <sup>-3</sup> = 2<br>1.22 X 10 <sup>-3</sup>                                                                                                                          |                                        |         |
|      | Comparing experiment 4 & 5 / 1 & 4, when the concentration of I is doubled, the initial rate of reaction is doubled                                                             | 1                                      |         |
|      | $\frac{4.88 \times 10^{-3}}{2.44 \times 10^{-3}} = 2$                                                                                                                           | 1 (for<br>both<br>calculatio<br>ns)    |         |
| aiii | Zero order First order                                                                                                                                                          | 2 (1m for<br>each<br>correct<br>graph) |         |
|      | Concentration Concentration                                                                                                                                                     |                                        |         |
| aiv  | Initial rate of reaction : 4.88 X 10 <sup>-3</sup> mol/dm <sup>3</sup> s                                                                                                        | 1                                      |         |
|      | Concentration of S <sub>2</sub> O <sub>8</sub> <sup>2-</sup> : 0.016 mol/dm <sup>3</sup>                                                                                        | 1                                      |         |
| bi   | Fe <sup>2+</sup> acts as a catalyst.                                                                                                                                            | 1                                      |         |
|      | It speeds up the rate of reaction (by providing an alternative pathway with lower activation energy) and remain chemically unchanged at the end of the reaction.                | 1                                      |         |

| bii | T 1. | Add sodium hydroxide/potassium hyroxide to | 1 |   |
|-----|------|--------------------------------------------|---|---|
|     |      | precipitate out the insoluble iron (II)    |   |   |
| 1   |      | hydroxide                                  |   | 1 |
|     | 2.   | filter to remove the iron (II) hydroxide   |   |   |
|     |      | precipitate.                               | 1 |   |

**EITHER** 

| FIJHE |                                                                                                                                                         |      | <del></del> |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|
| Qn.   | Description                                                                                                                                             | Mark | Remarks     |
| 12ai  | 2NIS + 3O <sub>2</sub> → 2NIO + 2SO <sub>2</sub>                                                                                                        | 1    |             |
| ai    | no. of moles of NiS= 182000 / 59+32 = 2000 mol                                                                                                          | 1    |             |
|       | 2000 x (32 +16x2) = 128 kg                                                                                                                              | 1    |             |
| b     | magnesium is more reactive than carbon;                                                                                                                 | 1    |             |
|       | thus manufacture by <u>electrolysis</u> (of its ore) instead of reduction by carbon;                                                                    | 1    |             |
| ci    | simple covalent molecule/ simple molecular structure with                                                                                               | 1    |             |
|       | It has a low boiling point which is probably due to<br>the need for little amount of energy to overcome<br>the weak intermolecular forces of attraction |      |             |
|       | between the molecules.                                                                                                                                  | 1    |             |
| cii   | no visible change                                                                                                                                       | 1    |             |
| d     | blue solution turned green                                                                                                                              | 1    |             |
|       | nickel coated with pink solid                                                                                                                           | 1    |             |

OR

|     |                                                | 1    |         |
|-----|------------------------------------------------|------|---------|
| Qn. | Description                                    | Mark | Remarks |
| 12a | $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$        |      |         |
|     | Zn + 2HCl → ZnCl <sub>2</sub> + H <sub>2</sub> |      |         |
|     | No.of moles of zinc used                       |      |         |
|     | = 0.488/65                                     |      |         |
|     | = 0.00751 mol                                  | 1    |         |
|     |                                                |      |         |

|     | No. of moles of acid used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
|     | = 2.0 x 20.0/1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |
|     | = 0.04 mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
|     | The state of the s | 1   |      |
|     | Zinc is the limiting reagent in both reactions and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 i |      |
|     | will produce the same volume (180 cm³) of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   |      |
|     | hydrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |      |
|     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
|     | A :- thetion with multiplication oid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |
| b   | A is the reaction with sulfuric acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |
| į   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
| į.  | Curve A has a steeper gradient than curve B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |      |
|     | which means experiment A has a faster rate of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1   |      |
| !   | reaction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |
|     | reaction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4   |      |
|     | Given the acid concentration is the same, since                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   |      |
|     | sulfuric acid is dibasic while hydrochloric acid is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |
|     | monobasic, the concentration of H <sup>±</sup> present in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |
|     | sulfuric acid is twice as much as in hydrochloric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
|     | acid. Hence rate is faster for reaction with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |
|     | sulfuric acid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
| cì  | Sulfuric acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
|     | Comes C above the same initial gradient as ourse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |
|     | Curve C shows the same initial gradient as curve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 1    |
| ł   | A which means they have the same initial rate of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1   |      |
|     | reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
| cii | No. of moles of hydrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1   |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,   |      |
|     | = 90/24000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |      |
|     | = 0.00375 mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | <br> |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
|     | mass of zinc = $0.00375 \times 65 = 0.244 g$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
|     | Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ĺ   |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
|     | half the control of t |     |      |
|     | half the volume of hydrogen, therefore half the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   |      |
|     | mass of zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |
|     | so 0.488/2 = 0.244 g;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
|     | $7n(a) + CusO_{1}(aa) + 7nsO_{1}(aa) + Cus(a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1   |      |
| d   | Zn(s) + CuSO₄(aq) → ZnSO₄ (aq) + Cu(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | '   |      |
| 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
| 4   | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t   | 1    |

| $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$                         |   |  |
|-------------------------------------------------------------------------------|---|--|
| zinc displaces copper from copper(II) sulfate to produce brown copper deposit | 1 |  |
| less zinc reacts with acid to produce less hydrogen;                          | 1 |  |

## Admiralty Secondary School Marking Scheme 4E Pure Chemistry (Paper 3) PRELIMINARY EXAMINATION 2021

| Qn           | Indicative material                                                                                                       | Mark | Total |
|--------------|---------------------------------------------------------------------------------------------------------------------------|------|-------|
| 1(a)         | full set of data (5 time taken values) + correct trend (increasing)                                                       | 1    | [4]   |
| :            | accurate calculation of average speed of reaction                                                                         | 1    |       |
|              | all time taken recorded to nearest second                                                                                 | 1    |       |
|              | accurate calculated speed to 3 s.f.                                                                                       | 1    |       |
| <b>1</b> (b) | axis labels + units                                                                                                       | 1    | [4]   |
|              | appropriate scale (y-axis to cover at least 2/3 of paper)                                                                 | 1    |       |
|              | all points correctly plotted                                                                                              | 1    |       |
|              | best fit line (0,0 is not a data point)                                                                                   | 1    |       |
| 1(c)         | Trend: The larger the volume of P used, the higher the average speed of reaction.                                         | 1    | [3]   |
|              | Explain: Larger volume of P, higher concentration of P, more P particles per unit volume                                  | 1    |       |
|              | Higher frequency of collision and <u>higher frequency of</u> <u>effective collision</u> , hence higher speed of reaction. | 1    |       |
| 1(d)         | No of moles of P to use<br>= (0.18 x 25) / 1000                                                                           |      | [2]   |
|              | = 0.00450 mol                                                                                                             | 1    |       |
|              | Volume of P to draw from 0.2 mol/dm <sup>3</sup> P = (1000 x 0.0045) / 0.2                                                |      |       |
|              | = 22.5 cm <sup>3</sup>                                                                                                    | 1    |       |
| 1(e)         | value from graph AND indication shown                                                                                     | 1    | [1]   |
|              | to determine from x = 22.5 cm <sup>3</sup> allow ECF from 1(d)                                                            |      |       |
| 1(f)         | Change to the experiments  Use burette/pipette                                                                            | 1    | [2]   |
|              | <ul> <li>Repeat each set of experiment a few imes and find<br/>average of time taken</li> </ul>                           |      |       |
|              | Explanation (to match change suggested)  More accurate (than measuring cylinder)                                          | 1    |       |

|      |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | ······ |
|------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|
| 1/2) | To reduce the human                                                      | reaction time error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1          |        |
| 1(g) | Start from origin     Stooper gradient                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ` <b>!</b> |        |
|      | <ul> <li>Steeper gradient</li> <li>Iif original best fit line</li> </ul> | e does not pass through origin,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|      | can accept line where                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|      | the original best fit lin                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|      | the same]                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|      |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
| 1(h) | <u>Procedures</u>                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          | [5]    |
|      | · · · · · · · · · · · · · · · · · · ·                                    | detailed in Experiment 1. This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |        |
|      | · ·                                                                      | hermometer to measure the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |        |
|      | temperature of solution F                                                | before adding to Q. Record the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |        |
|      | temperature, T <sub>0</sub> , to the n                                   | earest °C. [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |        |
|      |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|      |                                                                          | ore times with the temperature of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |        |
|      | solution P at T <sub>0</sub> +10,                                        | To+20, To+30 and To+40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | l      |
|      | respectively. [1]                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|      |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|      | 3. Record the temperature                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|      |                                                                          | econd, for mixture to turn blue-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |        |
|      | black                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|      | Results                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|      | Temperature of solution                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|      | P/°C                                                                     | Time taken / s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |        |
|      | T <sub>0</sub> =                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|      | T <sub>0</sub> + 10 =                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|      | T <sub>0</sub> + 20 =                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|      | T <sub>0</sub> +30 =                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|      | T <sub>0</sub> +40 =                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
| :    | [1]                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|      | 1,1                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|      | Data Processing                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|      |                                                                          | -black colour to appear for every                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |        |
|      | increase in 10 °C of solution                                            | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |        |
|      | is confirmed. [1]                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|      | • <b>,</b>                                                               | and the second s |            |        |
|      | <u>Assumptions</u>                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|      | 1. Solution P is stable to                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
| :    | normally                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|      | 2. The temperature differe                                               | nce between each successive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |        |
|      | mixture when P is added                                                  | to Q is approximately 10 °C even                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |        |
|      | though solution Q and the                                                | e starch solution is not heated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |        |
|      |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|      | 1 mark awarded for any one                                               | of the above two points.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |        |
|      |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |

Note: Supervisors are asked to carry out the following experiment to ensure that results fall within the required limits.

To 10.0 cm³ of Q, add 2 cm³ of starch solution and then add 25cm³ of P.

The time taken for the mixture to turn blue-black should be within 15-25 s.

To adjust the time taken, increase or decrease the concentration of P.

## Setter's results for Question 1:

| experiment | volume<br>of <b>Q</b> /<br>cm <sup>3</sup> | volume of<br>starch /<br>cm³ | volume<br>of P /<br>cm <sup>3</sup> | volume of<br>water /<br>cm³ | time taken<br>/ s | 1<br>time taken / s <sup>-1</sup> |
|------------|--------------------------------------------|------------------------------|-------------------------------------|-----------------------------|-------------------|-----------------------------------|
| 1          | 10                                         | 2                            | 25                                  | 0                           | 19                | 0.0526                            |
| 2          | 10                                         | 2                            | 20                                  | 5                           | 26                | 0.0385                            |
| 3          | 10                                         | 2                            | 15                                  | 10                          | 32                | 0.0313                            |
| 4          | 10                                         | 2                            | 10                                  | 15                          | 63                | 0.0159                            |
| 5          | 10                                         | 2                            | 5                                   | 20                          | 138               | 0.00724                           |

|       | i       |   | ļ |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | de et men exerc | : |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|---------|---|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |         |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |         | 1 |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |   |   | Name of the State  |
|       | . , . , |   |   | , |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | :       |   | , |   | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |   |   | The state of the s |
| <br>· |         |   |   |   | and the same of th |                 |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |         |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |   | , |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |         |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Qn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Indicative material                                                                                                                                      | Mark                                                                                                                                                                                 | Total |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| 2(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Test                                                                                                                                                     | Observations                                                                                                                                                                         |       | [12] |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test 1 Place 2 cm³ of R in a test tube and add equal volume of aqueous silver nitrate                                                                    | Yellow/pale yellow ppt formed.                                                                                                                                                       | 1     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Add dilute nitric acid to the mixture.                                                                                                                   | No changed is observed.                                                                                                                                                              | 1     |      |
| A COLUMN A C | Test 2 Place 1 cm <sup>3</sup> of R in a test tube and add an equal volume of aqueous copper(II) sulfate.                                                | (Colourless solution turned brown.) A pale brown ppt is produced.  2KI(aq) + CuSO₄ (aq) → 2CuI(s) + I₂(aq) + K₂SO₄                                                                   | 1     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Add aqueous sodium thiosulfate to the mixture until no further change take place.                                                                        | Brown ppt (turned to white ppt) and soluble in excess to form colourless solution                                                                                                    | 7     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                          | { Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> – reducing agent}<br>I <sub>2</sub> (brown soln ) → I (colourless<br>solution                                                        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test 3 Place 2 cm <sup>3</sup> of R in a test tube and add an equal volume of dilute sulfuric acid and a few drops of S.                                 | Colouriess solution turned reddish brown/brown                                                                                                                                       | 1     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Add an excess of solution S to the mixture and allow to stand for a few minutes                                                                          | The brown solution turns dark brown/ black ppt formed.  2KI(aq) + H <sub>2</sub> SO <sub>4</sub> (aq) + H <sub>2</sub> O <sub>2</sub> →                                              | 1     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test 4 Place 2 cm³ of acidified potassium manganate(VI) solution in a test tube and add equal volume of S. Leave the mixture to stand for a few minutes. | Purple acidified potassium manganate (VII) solution turned from purple to colourless.  Effervescence observed. (Colourless gas produced relights the glowing splint. Gas is oxygen.) | 1     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test 5                                                                                                                                                   | Colourless/Light green solution turns to pale yellow or orange or                                                                                                                    | 1     |      |

The control of the co

|      | To 1 cm³ of aqueous iron(II) sulfate add an equal volume of S. Leave the mixture to stand for a few minutes, shaking occasionally.  To the mixture, add sodium hydroxide until is no further change is seen.                        | brown solution/ On standing brown ppt formed  (Effervescence observed. The gas produced relights the glowing splint. Gas is oxygen.)  Reddish brown ppt formed  Effervescence observed.  The gas produced relights the glowing splint. Gas is oxygen. | 1 1 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2(b) | Anion R is <u>iodide ion</u> , l-ion  Reasoning: In <b>Test 1</b> , a yellow precipitate of silver iodide is formed with silver nitrate solution.  The precipitate is insoluble in dilute nitric acid.  Ag* (aq) + l* (aq) → Agl(s) |                                                                                                                                                                                                                                                       |       | ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [2] |
| 2(c) | Chemical property of solution <b>R</b> is a reducing agent  Reasoning: In <b>Test 3</b> , colourless solution of iodide ion is oxidized to brown iodine solution.                                                                   |                                                                                                                                                                                                                                                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [2] |
| 2(d) | agent.  Reasoning: Reducing agent: In manganate (VII) solution is solution.  Oxdising agent: Tes                                                                                                                                    | rest 4, purple acidified potassium reduced to colourless Mn <sup>2+</sup> t 3, colourless I solution is t 5, the pale green Fe <sup>2+</sup> solution is ution.                                                                                       | 1     | And the state of t | [2] |